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Abstract

This report gives an introduction to a Bayesian probabilistic approach to
modeling a dynamic system, with emphasis on stochastic methods for poste-
rior inference. The Bayesian paradigm is a powerful tool to combine observed
data along with prior knowledge to gain a current (probabilistic) understand-
ing of unknown model parameters. In particular, it provides a very natural
framework for updating the state of knowledge in a dynamic system. For com-
plex systems, such updating needs to be carried out via stochastic sampling
of unknown model parameters. An overview is given of the well established
Markov chain Monte Carlo (MCMC) approach to achieve this and of the more
recent sequential Monte Carlo (SMC) approach, which is better suited for dy-
namic systems. Examples are provided, including an application to event
reconstruction for an atmospheric release.
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1 Short Introduction to Bayesian Modeling

We shall now give a brief introduction to the Bayesian paradigm to modeling and in-
ference, along with examples. A good introduction to Bayesian theory and modeling
is “Bayesian Theory” by Bernardo & Smith (1994) and “Bayesian Data Analysis”
by Gelman et al. (2004).

1.1 Basic Notation

Let X and Y be two random variables and denote by:

p(Y ) = the probability distribution of Y .

p(X, Y ) = the joint probability distribution of X and Y .

p(X |Y ) = the probability distribution of X conditional on Y .

We shall use the same notation for a continuous random variable, in which case p(·)
is referring to a continuous density function, and for a discrete random variable,
in which case p(·) is referring to a probability mass function. In addition, we shall
not in general distinguish between a (unknown) random variable and a particular
value it can take; hence, we use p(Y ) to mean both the probability distribution of
Y or if Y is known (observed) the probability distribution of Y evaluated at that
particular observed value.1 In the case where we need to distinguish between the
two, we write p(Y = y) to mean the probability distribution of the random variable
Y evaluated at the value y. Hence, if Y is a discrete random variable, p(Y = y) is
the probability of Y = y, while if Y is a continuous random variable, p(Y = y) is
the probability density function of Y evaluated at y.

There are few basic principles that are used repeatedly in this document:

(1) If the random variables X and Y are independent, then p(X, Y ) = p(X)p(Y ).

(2) Given the joint distribution of X and Y , the marginal distribution of Y is
given by integrating over X,

p(Y ) =

∫
X

p(dX, Y ), where X ∈ X .

If X is a discrete random variable with possible values x1, . . . , xn, then p(Y ) =∑n
i=1 p(X = xi, Y ).

(3) We have the following relationship between the joint distribution, the condi-
tional distribution, and the marginal distribution:

p(X, Y ) = p(X |Y )p(Y ) = p(Y |X)p(X).

1This is a slight abuse of notation, but has become an accepted practice in statistical literature,
particularly in Bayesian text.
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1.2 Bayes’ Theory

Reverend Thomas Bayes’ (1702–1761) theory simply states how one can relate the
probability of an event X occurring, conditionally on the fact that an another event
Y has occurred, to the probability of event Y occurring, conditionally on the fact
that event X has occurred. Bayes’ theory can be written as

p(X |Y ) =
p(Y |X)p(X)

p(Y )
∝ p(Y |X)p(X).

In above, one can think of X as representing possible model configurations (pa-
rameters) and Y as observed data. Then p(Y |X) describes, in a probabilistic way
how the observed data Y is linked to a given model configuration X, and is often
referred to as the likelihood or the data model. The distribution p(X) is referred to
as the prior distribution, describing in a probabilistic way possible model configu-
rations X prior to seeing the data Y . The end result is the posterior distribution of
X given the data Y , p(X |Y ), which describes possible model configurations given
(conditional on) the observed data. Given the posterior distribution, one can plot it
(particularly if X is one or two dimensional variable) or compute summary statistics
for the distribution. Popular statistics include:

Mean: E(X |Y ) =

∫
X

Xp(dX |Y ).

Variance: var(X |Y ) =

∫
X
(X − E(X |Y ))2p(dX |Y ).

Mode: arg max
X

p(X |Y ).

One can contrast Bayes’ theory to the more classical approach for inference,
where X is thought to be an unknown deterministic parameter and often estimated
using, for example maximum likelihood;

X̂ = the value of X that maximizes p(Y |X).

This gives a single best model configuration that is in compliance with the data (as
judged by p(Y |X)), while the posterior distribution p(X |Y ) assigns a probability
density over the different model configurations based on their compliance to the
observed data and our prior knowledge of X.

1.3 Examples

We shall now give few examples contrasting the classical and Bayesian approach.
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Discrete Probability Space

Assume that our (unknown) state-of-the-system parameter X can only take N differ-
ent, but known values; say x1, . . . , xN . From n independent experiments we observe
the data y1, . . . , yn. The data is assumed to be related to the unknown system
parameter X through a (conditional) probabilistic data model,

p(Y1 = yi |X) ; i = 1, . . . n,

where Yi is a random variable representing the outcome of the i-th experiment. Due
to the independence of the n experiments, the joint distribution of the data, given
the state of the system, is

p(Y = y |X) =
n∏

i=1

p(Y1 = y1 |X)

where Y = (Y1, . . . , Yn) and y = (y1, . . . , yn). Given a prior distribution on X,
p(X = xj); j = 1, . . . , N , the posterior probability distribution of X is given by

p(X = xj |Y = y) =
p(Y = y |X = xj)p(X = xj)∑N

k=1 p(Y = y |X = xk)p(X = xk)
; j = 1, . . . , N,

which is easily computed if one can evaluate p(Yi = yi |X = xj) and p(X = xj) for
i = 1, . . . , n and j = 1, . . . , N . Further, if one has very little information a priori
about which state the system is in, an ideal non-informative prior distribution for
X is p(X = xj) = 1/N ; j = 1, . . . , N . This prior distribution yields

p(X = xj |Y = y) ∝ p(Y = y |X = xj) ; j = 1, . . . , N.

The maximum likelihood (ML) estimator of X is given by the state

x̂ = arg max
x∈{x1,...,xN}

p(Y = y |X = x).

Hence, the ML estimator is the posterior mode (the value x that gives the highest
posterior probability) when X is given a non-informative prior distribution.

Gaussian Distributed Measurements

Assume we have the data y1, . . . , yn that are independently distributed according to
a Gaussian (normal) distribution with mean µ and variance σ2;

yi ∼ Gau(µ, σ2), independently for i = 1, . . . , n,

where “∼ Gau(µ, σ2)” reads “distributed as Gaussian with mean µ and variance
σ2”. Assume further that the variance σ2 is known, but the mean parameter µ

3
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is unknown and our goal is to conduct inference on µ given the data y1, . . . , yn.
Classical statistical analysis gives the ML estimator of µ as

µ̂ = ȳ, where ȳ =
1

n

n∑
i=1

yi.

In the Bayesian framework, assume we assign µ the prior distribution

µ ∼ Gau(ξ, τ 2), ξ and τ 2 known and given.

The posterior distribution of µ, p(µ |y), can be shown to be Gau(M, V ) with

M =

(
ȳ

σ2/n
+

ξ

τ 2

)
V and V =

(
1

σ2/n
+

1

τ 2

)−1

.

The posterior mean can be seen to be a weighted average of the empirical average
ȳ and the prior mean ξ. Note as n gets large (more data sampled), M gets closer
to ȳ, the ML estimator of µ, and the posterior variance gets closer to σ2/n (which
is the variance of ȳ). Similarly, as one lets τ 2 grow larger (yielding effectively a
non-informative prior for µ), the same effect is seen.

Numerical (Physical) Model

Assume we have a deterministic numerical (physical) model that predicts n different
numerical quantities. Let (

F1(θ), . . . , Fn(θ)
)

= F(θ),

be the n predicted output quantities from the numerical model when configured
according to the parameter θ. An experiment is conducted that gives (observed)
measurements y1, . . . , yn of the quantities that the numerical model F (·) aims at
predicting. The observed data is assumed to be related to the model predictions as
follows,

yi = Fi(θ) + εi ; i = 1, . . . , n,

where ε1, . . . , εn are independent Gaussian distributed measurement errors with with
zero mean and a known variance σ2. The data model above can also be written as

yi ∼ Gau(Fi(θ), σ
2) ; i = 1, . . . , n,

yielding a data model p(yi | θ) that is a Gaussian distribution with mean Fi(θ) and
variance σ2.

The ML estimator of θ is given by

θ̂ = arg max
θ

p(y | θ),

4
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where

p(y | θ) =
n∏

i=1

p(yi | θ).

Depending on how computationally involved the numerical model is, and on the
dimension of θ, the above (global) optimization can be difficult to carry out.

Given a prior distribution on θ, p(θ), the posterior distribution of θ is given by

p(θ |y) =
p(y | θ)p(θ)

p(y)
,

where

p(y) =

∫
p(y | θ)p(dθ).

Again, depending on how computationally involved F (·) is and on the dimensional-
ity of θ, evaluating (numerically) the above integral can be prohibitively expensive.
Instead of trying to evaluate the integral, an alternative approach is to generate a
collection of realizations from the posterior distribution and use these samples to
conduct inference (i.e., compute the mean, variance, etc., of the posterior distribu-
tion of θ). Indeed, that is the focus of the remaining portion of this report for the
case where the posterior distribution of interest is of a particular dynamic form.

5
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2 Dynamic Bayesian Models

We shall now focus on a particular class of probability models that are dynamic by
nature. For this class of models the parameter space of interest is expanding with
time while more data is gathered. Hence, as each new batch of data arrives our
goal is to carry out, or rather update our current probabilistic knowledge of the
system, which at that point includes both “old” and “new” parameters. A good
introduction to dynamic models is “Bayesian Forecasting and Dynamic Models” by
West & Harrison (1997).

2.1 The Basic Definition

Denote by

θt the collection of model parameters associated with time t.

yt the collection of (potential) data available at time t.

The relationship between the data and the model parameters is described proba-
bilistically by the time-evolving data-model (the likelihood),

p(yt |θ1:t) ; t = 1, 2, . . . , (1)

where we have, without loss of generality, assumed discrete and equal-spaced time
points, and where

θ1:t ≡ (θ1, . . . ,θt).

Note that the observed data yt do not only depend on the parameters at time t, θt,
but on the whole time history, θ1:t. The joint distribution of all data observed up
to and including time t is given by

p(y1:t |θ1:t) =
t∏

t′=1

p(yt′ |θ1:t′), (2)

where y1:t ≡ (y1, . . . ,yt).

For Bayesian inference a prior distribution is specified for the model parame-
ters θ1, . . . , θt. Taking advantage of the dynamic nature of the model, the prior
distribution can be written as

p(θ1:t) = p(θ1)p(θ2 |θ1) · · · p(θt |θ1:t−1), (3)

where the prior distribution of the model parameters at each time point is specified
conditional on the model parameters from the previous time points.

We can summarize our dynamic model as:

Data-Model: p(yt |θ1:t)

Parameter-Model: p(θt |θ1:t−1),
(4)

6
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along with the initial prior distribution p(θ1); t = 1, 2, . . . . It should be noted that
both the data model and the parameter model in (4) can also condition on past
data, yielding the more general model:

Data-Model: p(yt |θ1:t,y1:t−1)

Parameter-Model: p(θt |θ1:t−1,y1:t−1).

However, for the remaining of this document we shall assume (4), but the results
presented do apply to the more general model above.

Our goal is to conduct posterior inference on θ1:t as time evolves and more data
is gathered. Bayes’ theory gives the posterior distribution at time t as

πt(θ1:t) ≡ p(θ1:t |y1:t) ∝ p(y1:t |θ1:t)p(θ1:t). (5)

Using the product form of the likelihood in (2) and the dynamic nature of the
prior in (3), we can write the posterior as (or rather, proportional to) the following
product,

πt(θ1:t) ∝

(
t∏

t′=1

p(yt′ |θ1:t′)

)(
t∏

t′=1

p(θt′ |θ1:t′−1)

)
=

t∏
t′=1

p(yt′ |θ1:t′)p(θt′ |θ1:t′−1),

(6)
where we for convenience define θ1:0 = ∅ (an empty set of parameters), so that
p(θ1 |θ1:0) = p(θ1). The above expression for the posterior hints at an alterna-
tive, sequential expression for the posterior distribution at time t, that is based on
“updating” the posterior distribution from the previous time point, t− 1;

πt(θ1:t) ∝
(
p(yt |θ1:t)p(θt |θ1:t−1)

)
πt−1(θ1:t−1). (7)

One can also derive this posterior updating expression from a purely statistical
argument as follows: Given πt−1(θ1:t−1), our prior knowledge of θ1:t at time t based
on all data up to and including time t− 1 is given by the distribution

πt−1(θ1:t) ≡ p(θ1:t |y1:t−1) = p(θt |θ1:t−1,y1:t−1)p(θ1:t−1 |y1:t−1)

= p(θt |θ1:t−1)πt−1(θ1:t−1),

where we used that θt is independent of the data y1:t−1 given the parameter his-
tory θ1:t−1 (i.e., p(θt |θ1:t−1,y1:t−1) = p(θt |θ1:t−1)). Using this, we can write the
posterior at time t as

πt(θ1:t) = p(yt |θ1:t)πt−1(θ1:t).

Although one can write down the posterior distribution up to a proportionality
constant at each given time point t, using it for inference is altogether another
problem. Computing the proportionality constant can be prohibitively difficult as it
involves a numerical multi-dimensional integral (integrating p(y1:t |θ1:t)p(θ1:t) with

7
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respect to θ1:t). An alternative is to sample (i.e., generate) realizations from the
(unscaled) posterior distribution and use them for inference (i.e., computing means,
variances, quantiles, etc.). Even if we could compute the missing proportionality
constant, sampling based inference is often the only viable option in summarizing
the posterior distribution, especially in high dimensional settings. This is what we
shall explore in Section 3 and 4, and in particular how one can construct a sampling
procedure that samples from π1(θ1), π2(θ1:2), . . . , in a sequential effective way,
taking advantage of the dynamic nature of the posterior in (7)

2.2 Example: Target Tracking

A classical example of a dynamic model is 2D target tracking. The goal is to track a
moving target and report on its location, xt = (x1t, x2t), and velocity, vt = (v1t, v2t),
at discrete time points t = 1, 2, . . . . A simple dynamic model for θt = (xt,vt) is
given by

xt = xt−1 + 0.5(vt−1 + vt)

vt = vt−1 + δt,

which linearly interpolates the velocity vector between time (t − 1) and t and as-
sumes an auto-regressive model for the velocity vector, where the rate-of-change (the
acceleration) δt is assumed Gaussian with mean zero and known variance-covariance
matrix W. The model can also be written in the matrix form[

xt

vt

]
=

[
1 1
0 1

] [
xt−1

vt−1

]
+

[
0.5
1

]
δt.

For simplicity, assume that the target tracking data consists of (noise corrupted)
position observations, y1,y2, . . . , that are related to the actual location of the target
via

yt = xt + εt,

where εt is a zero mean Gaussian measurement error with variance-covariance matrix
V.

Given an initial Gaussian prior distribution for (x1,v1), a closed-form solution
(the Kalman-filter) exists for updating the posterior distribution at time (t− 1) to
yield the posterior distribution at time t in the form of a Gaussian distribution (see
e.g., West & Harrison, 1997, for an overview). This result depends on the linearity
of both the measurement model and the dynamic model for (xt,vt), along with the
Gaussian assumption made about the measurement errors and the acceleration of
the target.

It is relatively easy to extend the above simple target tracking scenario to a
more complicated one, where the observed tracking data are not directly (linearly)
related to the location of the target and the maneuvering model for the target

8
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is much more complicated. For such a general model, a closed-form solution for
updating the posterior distribution at each time t is seldom available and one needs
to resort to sampling-based methods for posterior inference.

2.3 Example: Atmospheric Dispersion Modeling with Un-
known Source Characteristics

The goal here is to estimate (probabilistically) the location and release rate history
of a contaminant into the atmosphere using a numerical atmospheric contaminant
dispersion model and relatively few concentration measurements at given sensor
locations. In this simple scenario let

xt ∈ R3 be the location of a point source in the time interval (t− 1, t].

st ∈ R+ be the source strength (release rate) in the time interval (t− 1, t].

θt ≡ (xt, st).

Given the source history θ1:t = (x1:t, s1:t) we use a rather simple Gaussian puff
model, INPUFF (Petersen & Lavdas, 1986), to predict the resulting concentration
of the contaminant. Let

Ĉ(x′, t′) = Ĉ(x′, t′; θ1:t′) be the model predicted contaminant average concentra-
tion in (t′ − 1, t′] at location x′ due to a source with release history given by
θ1:t′ .

For the dispersion model in question, the predicted concentration Ĉ(x′, t′) can be
broken down into additive contributions from each time interval,

Ĉ(x′, t′) =
t′∑

t=1

Ĝxt,t(x
′, t′)st, (8)

where

Ĝx,t(x
′, t′) gives the predicted average concentration in (t′ − 1, t] at x′ due to

a source at location x with a release rate of 1 in (t − 1, t] (and zero outside
(t− 1, t]).

The observed data is assumed to consist of time-averaged concentration mea-
surements at given sensor (monitor) sites. Assuming a network of M sensors at
locations m1, . . . ,mM , let

cj,t = the average observed concentration from the j-th sensor in the time interval
(t− 1, t].

9
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The observed data is then assumed to be related to the predicted concentration via
the simple data model

p(cj,t | Ĉ(mj, t)) = Gau(Ĉ(mj, t), V (Ĉ(mj, t))
∣∣∞
0

, (9)

where Gau(µ, σ2)
∣∣u
l

denotes a Gaussian (Normal) density with mean µ and variance
σ2 and truncated between l and u (l < u), and V (·) is a known variance function.

The model is then fully specified by giving a prior distribution for the source
location and the release rate history. We shall assume that the source is not moving,
xt = x, but little is know about it’s location. We therefore assign a non-informative
prior to the location,

p(x) ∝ 1 if x ∈ X , 0 otherwise,

where X is the spatial domain of interest. The source release is assumed to start
at an unknown time t∗ ≥ 1 with a vague information of the initial release rate, but
is then assumed to change “smoothly” as time progresses. We formulate this prior
information as following:

p(t∗) =

{
1/t∗max if t∗ ∈ {1, . . . , t∗max},
0 otherwise.

(10)

That is, a flat prior on the initial start-time between t∗ = 1 and t∗ = t∗max. For the
initial release rate, we assume that

pt∗(st∗) = f1(st∗) (11)

where f1(·) is a given prior distribution on positive release and note that s1 = · · · =
st∗−1 = 0. And finally for t > t∗, we assume that

p(st | st−1) = f2(st | st−1) (12)

where f2(· | ·) is a conditional distribution. An example of f1 and f2 are:

f1(·) = Gau(µ1, σ
2
1)
∣∣c+
0

f2(· | st−1) = Gau(st−1, σ
2
2)
∣∣c+
0

,

where the parameters µ1, σ2
1, and σ2

2 are assumed known and recall that Gau(·, ·)
∣∣c+
0

denotes a truncated Gaussian distribution.
Due to how complicated the model is, particularly the dependence of the disper-

sion model on the location parameter x, sampling-based methods need to be used
for posterior inference at each time point t. And this is what we shall now study
for the dynamic model in general.

10
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3 Markov Chain Monte Carlo (MCMC)

We shall now give a review of the well established Markov chain Monte Carlo
(MCMC) approach for generating realizations from the posterior distribution πt(θ1:t)
in (7); t = 1, 2, . . . . A good practical introduction to MCMC is the volume ”Markov
Chain Monte Carlo in Practice”, edited by Gilks et al. (1996), the book ”Monte
Carlo Strategies in Scientific Computing” by Liu (2001), and the overview paper by
Andrieu et al. (2003).

Our basic goal is to generate realizations, θ
(1)
1:t , . . . ,θ

(N)
1:t from the posterior distri-

bution πt(θ1:t) in (7) for t = 1, 2, . . . . All inference are then conducted using these
realizations. That is, for example if Q(θ1:t) is a function of the unknown parameters,
then its posterior expected value,

E(Q(θ1:t) |y1:t) ≡
∫

Q(θ1:t)πt(dθ1:t),

is approximated by

Ê(Q(θ1:t) |y1:t) ≡
N∑

i=1

(1/N)Q(θ
(i)
1:t).

Basically we have approximated the posterior distribution at time t, πt(θ1:t), by the
empirical distribution function,

π̂N
t (θ1:t) =

N∑
i=1

(1/N)δ(θ
(i)
1:t − θ1:t), (13)

where δ(θ
(i)
1:t − θ1:t) = 1 if θ

(i)
1:t = θ1:t, otherwise 0.

3.1 The Basics of MCMC

The MCMC approach has a long and successful history for non-dynamic models, but
has been shown to be somewhat less appropriate for dynamic models (in its most
general form). However, there are cases when MCMC is well suited for dynamic
models, one being when the main interest is on a single time point given fixed set
of data and as such the model can simply be treated as static.

The MCMC approach generates realization(s) from a Markov chain that has the
posterior distribution πt(θ1:t) as its stationary distribution. This is accomplished

by generating the realization θ
(i)
1:t using the previous realization, θ

(i−1)
1:t along with a

probabilistic proposal mechanism that outlines how this is done. One of the most
popularized MCMC algorithm to generate a chain of size N from πt(θ1:t) is given
in Table 1 and is referred to as the Metropolis-Hastings (M-H) MCMC sampling

algorithm. The proposal distribution qt(θ̃1:t |θ(i)
1:t) in Step A of the M-H algorithm

11
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is specified by the user and can be very general (see Section 3.4). The acceptance
ratio in Step B of the M-H algorithm is given by the posterior ratio multiplied by
the proposal ratio (or rather divided by the proposal ratio). The inclusion of the
proposal ratio is to correct for “bias” in the proposal distribution; note that if the
proposal distribution is symmertric (unbiased), that is, qt(θ̃1:t |θ(i)

1:t) = qt(θ
(i)
1:t | θ̃1:t),

then the proposal ratio is just equal to 1 and does not enter the expression for the
acceptance ratio.

Table 1: Markov Chain Monte Carlo (MCMC) Algorithm:

The following algorithm describes how to generate realizations from πt(θ1:t) for a
given t (i.e., at a given time point).

Step 0 (Initialization): A starting value θ
(1)
1:t for the Markov chain is proposed.

For i = 1, . . . , N − 1: Use Metropolis-Hasting (M-H) sampler:

Step A (Proposal) Given the i-th step of the Markov chain, θ
(i)
1:t, the next

step is proposed via a proposal distribution;

θ̃1:t ∼ qt(θ̃1:t |θ(i)
1:t). (14)

Step B (M-H Acceptance Ratio): The acceptance ratio,

ρt(θ̃1:t; θ
(i)
1:t) =

πt(θ̃1:t)qt(θ
(i)
1:t | θ̃1:t)

πt(θ
(i)
1:t)qt(θ̃1:t |θ(i)

1:t)
=

p(y1:t | θ̃1:t)p(θ̃1:t)qt(θ
(i)
1:t | θ̃1:t)

p(y1:t |θ(i)
1:t)p(θ

(i)
1:t)qt(θ̃1:t |θ(i)

1:t)
(15)

is computed, along with the acceptance probability

αt(θ1:t; θ
(i)
1:t) = min{ρt(θ̃1:t; θ

(i)
1:t), 1}.

Step C (Selection): Generate u ∼ Uniform[0, 1] and let

θ
(i+1)
1:t =

{
θ̃1:t if u ≤ αt(θ̃1:t; θ

(i)
1:t),

θ
(i)
1:t otherwise.

The efficiency of the M-H algorithm depends on the “quality” of the proposal
distribution in Step A. The proposal distribution can be factored in a fashion similar
to the prior distribution given in (3). That is (suppressing the chain index i),

qt(θ̃1:t |θ1:t) = qt(θ̃1 |θ1:t)qt(θ̃2 | θ̃1, θ1:t) · · · qt(θ̃t | θ̃1:t−1, θ1:t).

12
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By restricting the proposal of θ̃t′ , t′ = 1, . . . , t, to condition only on parameters
up to and including time t′ (a rather natural restriction given the dynamics of the
model), the above proposal distribution can be written as

qt(θ̃1:t |θ1:t) =
t∏

t′=1

qt(θ̃t′ | θ̃1:t′−1, θ1:t′), (16)

where recall that θ1:0 = ∅.
A typical MCMC proposal algorithm alternates between different type of pro-

posals in a systematic or random fashion with each proposal only modifying a subset
of the parameters. For example, a (sub-)proposal distribution that only modifies
the t-th parameter (the last parameter) can be written as

qt(θ̃1:t |θ1:t) = qt(θ̃t |θ1:t)δ(θ̃1:t−1 − θ1:t−1).

Similar sub-proposal distributions can be created for the other components of the
parameter vector, and the proposal step A in the MCMC Algorithm in Table 1
would alternate between different sub-proposals.

The acceptance ratio (15) can be written as the product,

ρt(θ̃1:t; θ1:t) =
t∏

t′=1

(
p(yt′ | θ̃1:t′)p(θ̃t′ | θ̃1:t′−1)qt(θt′ |θ1:t′−1, θ̃1:t′)

p(yt′ |θ1:t′)p(θt′ |θ1:t′−1)qt(θ̃t′ | θ̃1:t′−1, θ1:t′)

)
, (17)

using the conditional format of the proposal distribution in (16) and the product
format of the posterior in (6). Depending on the proposal distribution, it is not nec-
essarily the case that all the components in the above expression need to evaluated.
For example, if the new proposal θ̃1:t is such that only changes are made to θ̃t′′ ,
where t ≥ t′′ ≥ 1, then only terms with t′ ≥ t′′ in the final product in (17) need to
be evaluated, the other terms cancel out.

There are two characteristics that determine the effective sample size (the sta-

tistical efficiency) of the MCMC realizations θ
(1)
1:t , . . . ,θ

(N)
1:t : the burn-in period and

the chain’s auto-correlation. The burn-in period represents the number of samples
needed at the beginning for the Markov chain to actually reach the state where it is
sampling from the target distribution, πt(θ1:t). These initial samples are discarded
and not used for inference; hence reducing the effective sample size. The second
issue is auto-correlation. Due to the Markovian nature of the algorithm, the realiza-
tions θ

(1)
1:t , . . . ,θ

(N)
1:t are not an independent sample from πt(θ1:t); nearby realizations

can be highly correlated. The amount of auto-correlation in the sample depends
on how well the proposal distribution is able to “mix” the sample and the accep-
tance rate associated with the proposal distribution. If the proposal distribution
alters the chain too little at each step (θ̃1:t too close to θ1:t), the resulting MCMC
sample tends to show high auto-correlation. Similarly, a proposal distribution that
makes large changes at each step typically has a low acceptance ratio and therefore

13
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stays in the same state for a long period of time, which causes high auto-correlation
in the final sample. The optimal proposal distribution is somewhere in between,
and as a rule of thumb, an acceptance rate around 25% is thought to be good in
multi-dimensional problems (Gelman et al., 2004, page 306) (if higher, the pro-
posal distribution is making changes that are too small while if lower, the proposal
distribution is making changes that are too big).

The main drawback of the MCMC algorithm for dynamic models is it does not
have a natural way of carrying the posterior information available from the sample
θ

(1)
1:t , . . . ,θ

(N)
1:t over to time t + 1, to generate the sample θ

(1)
1:t+1, . . . ,θ

(N)
1:t+1. At time

t + 1 one would simply start a new Markov chain, with πt+1(θ1:t+1) as its targeting
distribution, without taking any direct advantage of the sequential nature of the
posterior distribution at time t + 1, as given by (7). There is one exception to this
that applies to a particular MCMC algorithm, an algorithm that rejuvenates and
extends the MCMC realizations from the previous time point, which we shall now
describe.

3.2 Sequential MCMC via Rejuvenation and Extension

We shall now give a short account of a particular MCMC algorithm that takes
advantage of the MCMC realizations from previous time step. We shall see later
that this MCMC algorithm mirrors (and in many ways inspires) a very similar
Sequential Monte Carlo (SMC) algorithm; see Section 4.3.

Assume at time t−1 we have an MCMC sample θ
(1)
1:t−1, . . . ,θ

(N)
1:t−1 from πt−1(θ1:t−1)

2.
Using this sample we derive the following approximation (as in (13)),

πt−1(θ1:t−1) ' π̂N
t−1(θ1:t−1) ≡

N∑
i=1

(1/N)δ(θ1:t−1 − θ
(i)
1:t−1).

By plugging this approximation in place of πt−1(θ1:t−1) in (7), we derive the following
approximation to the posterior at time t,

πt(θ1:t) ' C × p(yt |θ1:t)p(θt |θ1:t−1)
N∑

i=1

(1/N)δ(θ1:t−1 − θ
(i)
1:t−1)

= C ×
N∑

i=1

p(yt |θ(i)
1:t−1, θt)p(θt |θ(i)

1:t−1)(1/N)δ(θ1:t−1 − θ
(i)
1:t−1),

(18)

where C is an unknown normalizing constant. The approach we take here is to
generate samples from the approximation above instead of πt(θ1:t). By taking this
approach, we have restricted the to-be-generated realizations from the posterior
at time t to be of the form θ1:t = (θ

(I)
1:t−1, θt), where θ

(I)
1:t−1, I ∈ {1, . . . , N}, is a

2Assume also that this sample has been corrected for a burn-in period

14



Johannesson, Hanley, and Nitao Dynamic Bayesian Models via Monte Carlo

realization from the posterior at time t− 1. Hence, we are simply rejuvenating and
extending the past realizations based on the information content of the new data, yt.
The drawback of this approach is that if the new data is highly informative and not
very much in line with what the previous data have indicated, the past posterior
sample might not be rich enough (e.g., not large enough) to include a sufficient
number of past realizations that are in a good agreement with the new data. Hence,
taking this approach usually requires a large number of MCMC realizations (a large
N), and even if that is satisfied, it often yields an impoverished sample for conducting
inference on θt′ when t− t′ is large.

A well known trick to sample from a mixture of distributions, like the one in (18),
is to augment the parameter space to include the mixture index; work with (θ1:t, I)
instead of only θ1:t where I ∈ {1, . . . , N} is the mixture component index. Define
the following two distributions associated with the augmented parameter (θ1:t, I):

πa
t (θ1:t | I) ≡ C × p(yt |θ(I)

1:t−1, θt)p(θt |θ(I)
1:t−1)δ(θ1:t−1 − θ

(I)
1:t−1),

πa
t (I) ≡ 1/N ; I = 1, . . . , N.

The joint distribution of the augmented parameter (θ1:t, I) is then

πa
t (θ1:t, I) = πa

t (θ1:t | I)πa
t (I)

= C × p(yt |θ(I)
1:t−1, θt)p(θt |θ(I)

1:t−1)δ(θ1:t−1 − θ
(I)
1:t−1)(1/N),

and in particular, the marginal distribution of θ1:t with respect to πa
t (θ1:t, I) is

πa
t (θ1:t) =

N∑
I=1

πa
t (θ1:t | I)πa

t (I) = the mixture in (18).

This suggests that one could construct a MCMC algorithm to sample from πa
t (θ1:t, I)

and then simply drop the index I, yielding a sample from the above marginal dis-
tribution which is equal to the target mixture distribution in (18). The proposal for
this augmented approach (i.e., Step A in Table 1) would be:

Step A (Augmented Proposal)

(1) Sample Ĩ ∼ πa
t (Ĩ) = a uniform distribution on {1, . . . , N}.

(2) Sample θ̃t ∼ qt(θ̃t |θ(Ĩ)
1:t−1,yt).

(3) Let θ̃1:t ≡ (θ
(Ĩ)
1:t−1, θ̃t), and the augmented proposal is (θ̃1:t, Ĩ).

What is particularly noticeable about the above augmented proposal is it does
not depend on θ

(i)
1:t, the previous realization from the Markov chain. Proposal distri-

butions that have this feature are often referred to as independent M-H proposals.
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Since the proposals are independent they can be made in a parallel fashion, as N
independent processes. The augmented proposal can be made slightly more general
by replacing step (1) by the following:

(1’) Sample Ĩ ∼ qt(Ĩ |yt), a discrete proposal distribution on {1, . . . , N}.

Note that this proposal distribution depends on the new data yt, allowing for the
possibility of using the new data to see which realizations from time t− 1 are more
fit to be extended to time t and which are not.

The acceptance ratio (Step B in Table 1) for the augmented proposal is given
by:

Step B (Augmented M-H Acceptance Ratio) Let (θ
(i)
1:t, I

(i)) = (θ
(I(i))
1:t−1, θ

(i)
t , I(i))

be the previous sample from the Markov chain, then

ρt(θ̃1:t, Ĩ; θ
(i)
1:t, I

(i)) =
p(yt |θ(Ĩ)

1:t−1, θ̃t)p(θ̃t |θ(Ĩ)
1:t−1) qt(θ

(i)
t |θ(I(i))

1:t−1,yt)

p(yt |θ(I(i))
1:t−1, θ

(i)
t )p(θ

(i)
t |θ(I(i))

1:t−1) qt(θ̃t |θ(Ĩ)
1:t−1,yt)

.

Due to the augmented independent M-H sampler, the above acceptance ratio
does not include any mixed terms, terms that include both components from the
next proposed state, (θ̃1:t, Ĩ), and the current state, (θ

(i)
1:t, I

(i)). Even though this
is the case, the acceptance process can not made in parallel, as N independent
processes, as in the proposal step3. This is due to what seems to be a rather random
use of the i-th sample to compute the acceptance ratio for the new proposal, and
therefore influencing if the new state will be accepted or not; recall that the i-th
sample had no impact on how the new proposal was generated! One can therefore
ask if it is possible to “adapt” this particular MCMC algorithm such that in can be
easily conducted in parallel? The answer to that is Sequential Monte Carlo (SMC),
which we shall review in Section 4.

3.3 Sequential MCMC via Rejuvenation, Modification, and
Extension

What follows is an outline of how one could modify the above approach to also
propose changes in the parameter history (i.e., propose changes to θ1:t−1), not simply
rejuvenate and extend the previous realizations to time t. However, this extension
results in complications that might in some cases reduce its usefulness.

We replace the augmented proposal step from previous section with the following
step:

3Although, one could compute in parallel p(yt |θ(Ĩ)
1:t−1, θ̃t), p(θ̃t |θ(Ĩ)

1:t−1), and qt(θ̃t |θ(Ĩ)
1:t−1,yt)

for all the N different proposals that can be made in parallel (i.e., at the same time as the proposals
are made), and then use to compute the acceptance ratio when needed.
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Step A (Augmented Proposal 2)

(1) Sample Ĩ ∼ qt(Ĩ |yt), a distribution on {1, . . . , N}.
(2a) Sample θ̃1:t−1 ∼ qt(θ̃1:t−1 |θ(Ĩ)

1:t−1,yt).

(2b) Sample θ̃t ∼ qt(θ̃t | θ̃1:t−1,yt).

(3) Let θ̃1:t ≡ (θ̃1:t−1, θ̃t).

This version of the augmented proposal step both modifies the past (selected)

realization θ
(Ĩ)
1:t−1 and extents it to time t. The proposal distribution in step (2a)

can be taken to be of the sequential form,

qt(θ̃1:t−1 |θ(Ĩ)
1:t−1,yt) =

t−1∏
t′=1

qt(θ̃t′ | θ̃1:t′−1, θ
(Ĩ)
1:t′ ,yt).

Typically we aim only at changing relatively few parameters associated with θ
(Ĩ)
1:t−1

in the proposal (those parameters that are believed to have the largest impact on
the newly observed data yt). As such, many of the sub-proposal distributions above

put θ̃t′ = θ
(Ĩ)
t′ with probability 1.

The main difference (and added complexity) of this approach versus the previ-
ous approach that did not modify the past, is in computing the acceptance ratio
ρ. Instead of computing the acceptance ratio with respect to the mixture approxi-
mation in (18), yielding a approximate sample from the posterior, we compute the
acceptance ratio with respect to the true posterior, hence yielding a sample from
the exact posterior distribution. That is, the mixture approximation is only used to
construct the proposal. We use therefore (15), or (17), to compute the acceptance

ratio, with qt(θ̃1:t |θ(i)
1:t) in (15) given by

qt(θ̃1:t |θ(i)
1:t) = qt(θ̃1:t) = qt(θ̃t | θ̃1:t−1,yt)

N∑
Ĩ=1

qt(θ̃1:t−1 |θ(Ĩ)
1:t−1,yt)qt(Ĩ |yt).

A few comments on evaluating the proposal ratio (15). Since the proposal is derived
by modifying a realization from time t− 1, some of the likelihood and prior calcula-
tions involved have already been carried out at time t− 1. Secondly, evaluating the
proposal distribution qt(θ̃1:t) involves summation from Ĩ = 1 to N over the realiza-
tions from time t− 1, which can be computationally expensive. However, if only a
few of the past parameters are modified, most (if not all except one) of the N terms
in the sum are equal to zero, making it manageable to evaluate the mixture sum.

(For example, if we only modify the component θ
(Ĩ)
t−1 of the selected realization from

time t − 1, then only realizations from time t − 1 which have identical parameter
history from time 1 to t− 2 yield non-zero probability in computing the summation
associated with qt(θ̃1:t).)
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3.4 MCMC Proposal Distributions

Nothing has been said so far on how the proposal distributions (14) of the MCMC

algorithm are specified. In general, the only condition that qt(θ̃1:t |θ(i)
1:t) in (14) needs

to satisfy is the rather natural condition that

qt(θ̃1:t |θ(i)
1:t) > 0 if and only if qt(θ

(i)
1:t | θ̃1:t) > 0.

We shall now briefly mention few approaches that have been used for constructing
proposal distributions.

The Gibbs Sampler.

The Gibbs-sampling approach partitions the parameter vector θ1:t into blocks of
related parameters (e.g., into t blocks with each block given by θt′ ; t′ = 1, . . . , t). A
proposal is then made by changing the parameters of a single block at a time using
the full conditional distribution (see below) of the block’s parameters as the proposal
distribution. To demonstrate, let each parameter block consist of θt′ ; t′ = 1, . . . , t,
and we wish to propose a change to the block indexed by t′ ∈ {1, . . . , t}. The new
proposal, θ̃1:t, is given by

θ̃1:t\t′ = θ1:t\t′ and θ̃t′ ∼ πt(θ̃t′ |θ1:t\t′),

where θ1:t\t′ ≡ {θτ : τ = 1, . . . , t, τ 6= t′} and π(θ̃t′ |θ1:t\t′) is the full conditional

distribution of θ̃t′ , given by

πt(θ̃t′ |θ1:t\t′) = p(θ̃t′ |y1:t, θ1:t\t′).

The acceptance ratio (15) is then given by

ρt(θ̃1:t; θ1:t) =
πt(θ1:t\t′ , θ̃t′)πt(θt′ |θ1:t\t′)

πt(θ1:t\t′ , θt′)πt(θ̃t′ |θ1:t\t′)

=

(
πt(θ1:t\t′)πt(θ̃t′ |θ1:t\t′)

)
πt(θt′ |θ1:t\t′)(

πt(θ1:t\t′)πt(θt′ |θ1:t\t′)
)
πt(θ̃t′ |θ1:t\t′)

= 1.

Hence, Gibbs-sampler moves are always accepted. The algorithm updates the differ-
ent parameter blocks in a systematic order or a parameter block is selected randomly
and updated.

For complex models, the full conditional proposal distributions needed are not
always available in closed form or readily available for sampling. However, one can
aim at constructing a proposal distribution qt that is an approximation to the full
conditional distribution (e.g., a Gaussian approximation). In that case, one would
need to compute the acceptance ratio as it is not guaranteed to be equal to 1 (i.e.,
some of the proposal made by the approximation will most likely be rejected).
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Random-Walk MCMC

One of the more common way to create a MCMC proposal distribution is via simple
random walk. Let θ

(i)
1:t be the current state of the Markov chain. A new proposal is

generated as
θ̃1:t = θ

(i)
1:t + δ1:t,

where δ1:t ∼ qt(δ1:t |θ(i)
1:t). Hence, a perturbation is made to the current state of the

chain. The new proposal is then accepted or rejected in the usual way.

Langevin Diffusion.

Langevin diffusion can be thought of as a special case of a more general hybrid (or
rather ’Hamiltonian’) Monte Carlo algorithms (see e.g., Liu, 2001, chapter 9) and
yields a more effective random-walk procedure.

Let θ
(i)
1:t be the current state of the Markov chain. A new proposal is given by

θ̃1:t = θ
(i)
1:t +

1

2

∂ log πt(θ1:t)

∂θ1:t

∣∣∣∣
θ

(i)
1:t

h + h1/2Zt,

where Zt ∼ Gau(0, I) and h is a provided step-size parameter. Note the use of
the gradient of the log-posterior distribution in determine the proposal — the new
proposal has a tendency to be closer to the (local) mode of the posterior distribution.
The new proposal is then accepted or rejected in the usual way.
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Table 2: Importance Sampling (IS) Algorithm.

(1) Generate a sample of size N from the proposal distribution q(θ);

θ(i) ∼ q(θ), i = 1, . . . , N.

(2) Compute the importance weights,

w̃(i) ∝ π(θ(i))
q(θ(i))

, i = 1, . . . , N,

and define w(i) = w̃(i)/
∑N

j=1 w̃(j).

The distribution π(·) is then approximated by

π̂N (θ) ≡
N∑

i=1

w(i)δ(θ − θ(i)),

which places the probability mass w(1), . . . , w(N) on the support points θ(1), . . . ,θ(N).

4 Sequential Monte Carlo (SMC)

Sequential Monte Carlo (SMC) is inherently designed to sample from dynamic pos-
terior distributions, both in terms of leveraging the dynamic nature of the model
and also in terms of reusing previous calculations. As SMC is not Markovian, it is
inherently parallel; the different Monte Carlo proposals can be generated and evalu-
ated in parallel. A good Introduction to SMC is ”Sequential Monte Carlo Methods
in Practice” by Doucet et al. (2001) and ”Monte Carlo Strategies in Scientific Com-
puting” by Liu (2001). The paper by Arulampalam et al. (2002) gives a tutorial
focusing on Bayesian tracking.

4.1 Importance Sampling (IS)

At the core of the SMC approach is the generation of a weighted sample via im-
portance sampling (IS). Suppose one wants to generate a sample of size N from
the distribution π(θ) without having direct access to an algorithm to do so, but is
able to evaluate π(θ) up to a proportionality constant. Importance sampling ac-
complishis this by using a proposal distribution q(θ), that is close to π(θ) and from
which it is easy to generate samples. The basic algorithm is given in Table 2 on
page 20.

The efficiency of the IS algorithm to generate a representative sample from the
target distribution, π(θ), is judged by how evenly the importance weights {w̃(i)} are
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distributed. One measure on the efficiency is the effective sample size, defined as

ESS ≡ 1∑N
i=1(w

(i))2
.

If all the weights are equal, then ESS = N , and on the other side, if all the weights
are equal to zero except one, then ESS = 1.

For posterior inference, where π(θ) ∝ p(y |θ)p(θ) and y is the observed data,
IS is particularly useful. For example, one could take the proposal distribution as
the prior distribution, q(θ) = p(θ), which would result in

w̃(i) = p(y |θ(i)), for θ(i) ∼ p(θ) ; i = 1, . . . , N.

Hence, the weights would be proportional to the likelihood. Note that this might
not yield an effective posterior sample (in terms of ESS) and a better proposal
distribution might be needed, that is, a distribution that is closer to p(y |θ)p(θ).

4.2 The Basics of SMC

Sequential Monte Carlo aims at using IS to generate samples from a sequence of
distributions, π1(θ1), π2(θ1:2), . . . , without needing to start from “scratch” with each
new distribution. This makes SMC particularly efficient for dynamically evolving
models. The basic steps of the SMC algorithm are given in Table 3 on page 22.

The SMC algorithm is relatively simple, but as in IS, its effectiveness is de-
termined by how good the proposal distribution is in Step A, Table 3, and how
computationally feasible it is to evaluate the resulting importance weights in Step
B. By taking advantage of the dynamic nature of the model, the proposal distri-
bution can be partitioned in the same sequential fashion as the prior distribution,

qt(θ̃1:t) = qt(θ̃1)qt(θ̃2 | θ̃1:1) · · · qt(θ̃t | θ̃1:t−1) =
t∏

t′=1

qt(θ̃t′ | θ̃1:t′−1), (20)

where recall that θ̃1:0 = ∅, an empty set of parameters. For the proposal distribution
(20), the IS weight (19) can be written as

w̃1:t ∝
t∏

t′=1

(
p(yt′ | θ̃1:t′)p(θ̃t′ | θ̃1:t′−1)

qt(θ̃t′ | θ̃1:t′−1)

)
∝ w̃1:t−1

(
p(yt | θ̃1:t)p(θ̃t | θ̃1:t−1)

qt(θ̃t | θ̃1:t−1)

)

using the product format of the posterior in (6).
Note, although not directly indicated, all the conditional distributions in (20)

may take advantage of the IS from the previous time point, Θ1:t−1, and the new
data, yt; along the lines of the sequential MCMC algorithms in Section 3.2 and 3.3.
This is really the key to the success of SMC for dynamic problems.
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Table 3: Sequential Monte Carlo (SMC) Algorithm:

Initialization: Assume at time t = t0 ∈ {1, 2, . . . } we have an importance sample

Θ1:t0 = {θ(i)
1:t0

, w
(i)
1:t0

: i = 1, . . . , N}

from the posterior distribution πt0(θ1:t0)

For t = t0 + 1, t0 + 2, . . . :

Step A (Proposal)
For i = 1, . . . , N , sample

θ̃
(i)
1:t ∼ qt(θ̃1:t) = qt(θ̃t | θ̃1:t−1)qt(θ̃1:t−1)

where qt(θ̃1:t) is a user-specified proposal distribution. Note how the proposal
distribution is partitioned into two parts; first θ̃1:t−1 is sampled from qt(θ̃1:t−1)
and then θ̃t is sampled from qt(θ̃t | θ̃1:t−1).
The key to a good SMC proposal distribution is to leverage (condition on)
Θ1:t−1 and the new data yt. That is, take

qt(θ̃t | θ̃1:t−1)qt(θ̃1:t−1) = qt(θ̃t|θ̃1:t−1,yt)qt(θ̃1:t−1 |Θ1:t−1,yt).

Step B (Importance Weights)
For i = 1, . . . , N , evaluate the unscaled importance weights,

w̃
(i)
1:t ∝

πt(θ̃
(i)
1:t)

qt(θ̃
(i)
1:t)

∝
p(yt | θ̃

(i)
1:t)p(θ̃

(i)
t | θ̃(i)

1:t−1)

qt(θ̃
(i)
t | θ̃(i)

1:t−1)

πt−1(θ̃
(i)
1:t−1)

qt(θ̃
(i)
1:t−1)

(19)

Let,

θ
(i)
1:t = θ̃

(i)
1:t and w

(i)
1:t = w̃

(i)
1:t/

N∑
j=1

w̃
(j)
1:t ,

then, we have the approximation;

πt(θ1:t) ' π̂N
t (θ1:t) ≡

N∑
i=1

w
(i)
1:tδ(θ1:t − θ

(i)
1:t).

Note. Above, θ
(i)
1:t is simply put equal to θ̃

(i)
1:t, however, often an additional per-

turbation step is introduced (e.g., a single MCMC step) yielding θ
(i)
1:t different from

θ̃
(i)
1:t.
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A natural way to take advantage of the IS from πt−1(θ1:t−1) is to build a proposal
distribution qt(·) that conditions on a given realization from πt−1(θ1:t−1) (similar to
Section 3.2). Such proposal distribution can be written as

qt(θ̃1:t |θ1:t−1) = qt(θ̃t | θ̃1:t−1)qt(θ̃1:t−1 |θ1:t−1),

where θ1:t−1 ∼ πt−1(θ1:t−1).
(21)

The proposal distribution qt(θ̃1:t−1 |θ1:t−1) can be taken to be of the sequentially
form (see also (16)),

qt(θ̃1:t−1 |θ1:t−1) =
t−1∏
t′=1

qt(θ̃t′ | θ̃1:t′−1, θ1:t′).

Hence, the proposal can be considered to consist of three steps: (1) draw a real-
ization from πt−1(·), (2) perturbing the drawn realization via qt(θ̃1:t−1 |θ1:t−1), and
finally (3) extend the perturbed realization by drawing θ̃t from qt(θ̃t | θ̃1:t−1). The
immediate drawback of this general conditional proposal approach above is that

qt(θ̃1:t) = qt(θ̃t | θ̃1:t−1)

∫
qt(θ̃1:t−1 |θ1:t−1)πt−1(θ1:t−1)dθ1:t−1 (22)

is needed for the evaluation of the importance weight in (19). This integral is rarely
available in closed form and often difficult to evaluate directly. However, one has
the approximation,

qt(θ̃1:t) ' qt(θ̃t | θ̃1:t−1)
N∑

i=1

qt(θ̃1:t−1 |θ(i)
1:t−1)w

(i)
1:t−1,

using the IS approximation π̂N
t−1(θ1:t−1) of πt−1(θ1:t−1). Depending on how the

proposal qt(θ̃1:t−1 |θ1:t−1) is constructed, most of the terms in the summation above
might be equal to zero, and only few a terms would need to be summed up (it is
computationally expensive to loop through all N terms of the sum to generate a
single proposal — recall there are N proposals to be made). We shall now outline
SMC algorithms that take this approach and have been showed to be successful in
number of cases; see Doucet et al. (2001).

4.3 SMC via Rejuvenation and Extension

This algorithm is the SMC version of the MCMC rejuvenation and extension al-
gorithm in Section 3.2 — or vice versa. We shall first introduce it from a more
classical view which is often attributed to Neil Gordon (Gordon et al., 1993) and
referred to as Gordon’s bootstrap filter or simply as a particle filter. We then follow
up with a generalization due to Pitt and Shephard (Pitt & Shephard, 1999, 2001)
which improves on its efficiency and robustness.
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Gordon’s Bootstrap Filter

Classical applications of the SMC algorithm often have a data model (a likelihood)
where the data at time t only depends on the model parameters at time t,

p(yt |θ1:t) = p(yt |θt).

An example is the target tracking model in Section 2.2. As such, the newly ob-
served data yt is mostly informative about θt and carries less information about
θt−1, . . . ,θ1. In light of this, a good candidate for the conditional proposal distri-
bution in (21) is

qt(θ̃1:t |θ1:t−1) = qt(θ̃t | θ̃1:t−1)δ(θ̃1:t−1 − θ1:t−1),

where θ1:t−1 ∼ πt−1(θ1:t−1),
(23)

which corresponds to taking qt(θ̃1:t−1 |θ1:t−1) = δ(θ̃1:t−1 − θ1:t−1) in (21). That is,
θ̃1:t = (θ1:t−1, θ̃t), and only the new addition, θ̃t, is generated and the rest is kept
identical to θ1:t−1. Note, there is nothing in the above approach that prevents it
from being used for the more general data model p(yt |θ1:t). However, if the newly
acquired data has information that is not very much in line with past data, this
approach could yield a large number of SMC realizations with small weights (i.e., a
small effective sample size); this issue was also raised in Section 3.2.

To generate a proposal from (23) one would use the IS from πt−1(θ1:t−1), and
replace Step A in Table 3 with:

Step A (Rejuvenation and Extension Proposal)

(1) Sample Ĩ from {1, . . . , N} with p(Ĩ = j) = w
(j)
1:t−1; j = 1, . . . , N .

(2) Sample θ̃t ∼ qt(θ̃t |θ(Ĩ)
1:t−1).

(3) Let θ̃1:t ≡ (θ
(Ĩ)
1:t−1, θ̃t).

Since the proposal distribution (23) does not modify the past, the integral in
(22) does not need to be evaluated, and the marginal proposal distribution needed
for the IS weights in (19) is simply given by

qt(θ̃1:t) = qt(θ̃t | θ̃1:t−1)πt−1(θ̃1:t−1).

The resulting IS weights in Step B in Table 3 are then given by

w̃1:t ∝
πt(θ̃1:t)

qt(θ̃1:t)
∝ p(yt | θ̃1:t)p(θ̃t | θ̃1:t−1)πt−1(θ̃1:t−1)

qt(θ̃t | θ̃1:t−1)πt−1(θ̃1:t−1)
=

p(yt | θ̃1:t)p(θ̃t | θ̃1:t−1)

qt(θ̃t | θ̃1:t−1)
,

(24)
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and note how the πt−1(·) terms cancel out. Gordon et al. (1993) proposed taking
qt(θ̃t |θ1:t−1) equal to p(θ̃t |θ1:t−1), yielding w̃1:t = p(yt | θ̃1:t).

The goal in importance sampling is always to construct a proposal distribution
that results in weights of similar size, yielding a large effective sample size. For
the case above, when we condition on the past, it translates into selecting a good
proposal distribution for θ̃t. It can be shown that the full conditional distribution
p(θ̃t |θ1:t−1,yt) is the “optimal” proposal distribution for Gordon’s bootstrap filter,
since

p(θ̃t |θ1:t−1yt) ∝ p(yt | θ̃1:t)p(θ̃t |θ1:t−1), (25)

yielding w̃1:t ∝ 1 in (24).
Although one might be able to generate θ̃t using the optimal proposal distri-

bution (25), the step before, proposing θ̃1:t−1, is done without taking into account
the new data — it is simple generated from the posterior at time t − 1 using the
IS. This can be particularly inefficient if the new data carries information that has
large impact on the past. Pitt & Shephard (1999, 2001) improved upon the basic
bootstrap filter, by taking a similar approach as discussed in Section 3.2 and 3.3 on
sequential MCMC, which we shall outline now.

Pitt’s and Shephard’s Modification

We could have introduced the bootstrap filter by aiming at generating realizations
from the following mixture approximation to πt(θ1:t),

π̂t(θ1:t) ≡ C × p(yt |θ1:t)p(θt |θ1:t−1)
N∑

i=1

w
(i)
1:t−1δ(θ1:t−1 − θ

(i)
1:t−1)

= C ×
N∑

i=1

p(yt |θ(i)
1:t−1, θt)p(θt |θ(i)

1:t−1)w
(i)
1:t−1δ(θ1:t−1 − θ

(i)
1:t−1),

(26)

which is derived from (7) by replacing πt−1(θ1:t−1) with its IS approximation π̂N
t−1(θ1:t−1),

and where C is an unknown normalizing constant. Then, similar to Section 3.2, we
introduce the augmented parameter (θ1:t, I) with the joint distribution

πa
t (θ1:t, I) = C × p(yt |θ(I)

1:t−1, θt)p(θt |θ(I)
1:t−1)w

(I)
1:t−1δ(θ1:t−1 − θ

(I)
1:t−1), (27)

and we note that for the marginal distribution of θ1:t we have that

πa
t (θ1:t) =

N∑
I=1

πa
t (θ1:t, I) = the mixture in (26).

Hence, as mentioned in Section 3.2, this suggests that we could sample from the
joint augmented distribution in (27) and then simply drop the index I to derive a
sample from (26).

25



Johannesson, Hanley, and Nitao Dynamic Bayesian Models via Monte Carlo

Pitt and Shephard suggested basing the proposal on the augmented distribution

qa
t (θ̃1:t, Ĩ) = qt(θ̃t |θ(Ĩ)

1:t−1)v
(Ĩ)
1:t−1δ(θ̃1:t−1 − θ

(Ĩ)
1:t−1),

where the weighs v
(1)
1:t−1, . . . , v

(N)
1:t−1 are allowed to depend on the new data yt; if

v
(i)
1:t−1 = w

(i)
1:t−1 their approach yields the bootstrap filter. The marginal proposal

distribution for θ̃1:t is then

qt(θ̃1:t) =
N∑

i=1

qt(θ̃t | θ̃
(i)

1:t−1)v
(i)
1:t−1δ(θ̃1:t−1 − θ

(i)
1:t−1), (28)

which can be compared to (26). An augmented proposal is then simply generated
using the following procedure (very similar to the previous one):

Step A (P & S Rejuvenation and Extension Proposal)

(1) Sample Ĩ from {1, . . . , N} with p(Ĩ = j) = v
(j)
1:t−1; j = 1, . . . , N .

(2) Sample θ̃t ∼ qt(θ̃t |θ(Ĩ)
1:t−1).

(3) Let θ̃1:t = (θ
(Ĩ)
1:t−1, θ̃t), and the augmented proposal is (θ̃1:t, Ĩ).

The IS weight associated with the proposal (θ̃1:t, Ĩ) is given by

w̃1:t ∝
πa

t (θ̃1:t, Ĩ)

qa
t (θ̃1:t, Ĩ)

∝
p(yt |θ(Ĩ)

1:t−1, θ̃t)p(θ̃t |θ(Ĩ)
1:t−1)w̃

(Ĩ)
1:t−1

qt(θ̃t |θ(Ĩ)
1:t−1)v

(Ĩ)
1:t−1

(29)

In light of this, Pitt and Shephard proposed taking

v
(i)
1:t−1 ∝ w

(i)
1:t−1p(yt |θ(i)

1:t−1, θ̂t) and qt(θ̃t |θ(i)
1:t−1) = p(θ̃t |θ(i)

1:t−1),

where θ̂t = θ̂t(θ
(i)
1:t−1) is some likely value of θ̃t conditional on θ

(i)
1:t−1 (i.e., the mode,

the mean, or other likely value associated with p(θ̃t |θ(i)
1:t−1)). Alternatively, one

could use

v
(i)
1:t−1 ∝ w

(i)
1:t−1p(yt |θ(i)

1:t−1, θ̂t)p(θ̂t |θ(i)
1:t−1) and qt(θ̃t |θ(i)

1:t−1) = p(θ̃t |θ(i)
1:t−1,yt),

and recall that p(θ̃t |θ(i)
1:t−1,yt) ∝ p(yt |θ(i)

1:t−1, θ̃t)p(θ̃t |θ(i)
1:t−1).

Note that the final weights are not all equal, but the newly acquired data im-
pacted the weights v

(1)
1:t−1, . . . , v

(N)
1:t−1, and therefore which realizations from time t−1

were carried on to time t. This is particularly important when the distribution of
yt is given by p(yt |θ1:t), but not by p(yt |θt).
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4.4 SMC via Rejuvenation, Modification and Extension

We shall now extend the SMC approach introduced in the previous section to the
case where we not only extend previous IS realizations, but also modify them to
some extent. (See Section 3.3 for a similar topic.)

One approach to extend previous SMC approaches, that only rejuvenate and
extend previous IS realizations, is to consider a proposal distribution of the following
form,

qt(θ̃1:t) = qt(θ̃t | θ̃1:t−1)
N∑

i=1

qt(θ̃1:t−1 |θ(i)
1:t−1)qt(i) (30)

where {θ(i)
1:t−1} are the IS from time t − 1. Note that through qt(θ̃1:t−1 |θ(i)

1:t−1) a
perturbation can be made to i-th IS realization from time t − 1. A proposal from
this distribution is generated by the following steps:

Step A (Rejuvenation, Modification, and Extension Proposal)

(1) Sample Ĩ from {1, . . . , N} with p(Ĩ = i) = qt(i).

(2a) Sample θ̃1:t−1 ∼ qt(θ̃1:t−1 |θ(Ĩ)
1:t−1).

(2b) Sample θ̃t ∼ qt(θ̃t | θ̃1:t−1).

(3) Put θ̃1:t = (θ̃1:t−1, θ̃t).

As mentioned in Section 3.3, the conditional proposal distribution qt(θ̃1:t−1 |θ(Ĩ)
1:t−1)

can be taken to be of the sequential form,

qt(θ̃1:t−1 |θ(Ĩ)
1:t−1) =

t−1∏
t′=1

qt(θ̃t′ | θ̃1:t′−1, θ
(Ĩ)
1:t′),

and note that each of sub-proposal distributions may depend on the newly acquired
data, yt. If the new data is only informative for a small subset of the parame-
ters, many of the sub-proposal distributions can simply keep the past value of the

parameter intact (i.e., put θ̃t′ = θ̃
(Ĩ)

t′ with probability 1 for some t′ ∈ {1, . . . , t− 1}).
The main difference between this approach and the previous approach, in which

we did not perturb the past IS realizations, is that IS weight calculations can not
be based on the IS approximation in (26). The weight calculations need to be based
on the original expression for the posterior distribution; see (6). That makes this
approach not as computationally efficient as the previous method, however, it is
more flexible. The amount of extra computational effort needed depends on how
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extensively the proposal distribution qt(θ̃1:t−1 |θ(Ĩ)
1:t−1) modifies the IS realization

θ
(Ĩ)
1:t−1, generated at the previous time point. Recall, from (6), that the posterior

distribution can be written as

πt(θ1:t) ∝
t∏

t′=1

p(yt′ |θ1:t′)p(θt′ |θ1:t′−1). (31)

Then depending on how extensively θ
(Ĩ)
1:t−1 is modified by the proposal process, most

of the computations involved in computing the above posterior have already been
carried out at the previous time point. A similar argument applies to the evaluation
of the proposal distribution qt(θ̃1:t), given by (30) and needed in (19) to compute
the IS weight; see also Section 3.3 on generalizing the rejuvenating and extending
MCMC algorithm. We shall come back to the issue of modifying past IS realiza-
tions later in Section 4.5, where we combine SMC with MCMC to perturb past
realizations.

Note. For most applications, it is reasonable to assume that the newly acquired
data at time t, yt, has information content mostly relevant to parameters close to
t in time. That is, yt has no (or very small) information value for θ-parameters
sufficiently far into the past; for θt′ where t′ is considerably smaller than t. As such,
in practice one does not carry around the whole time history of the θ parameter,
but rather a time window of a fixed size (i.e., θ1:t is replaced with θ(t−k):t for some
k).

4.5 Hybrid Methods: MCMC within SMC and MCMC
prior to SMC

There can be some benefits of mixing SMC and MCMC to generate realizations
from the posterior. There are really two areas where MCMC could benefit SMC.

MCMC Within SMC

Some recent attempts have been made using a one or more MCMC steps within each
SMC step to perturb the current IS (MacEachern et al., 1999; Gilks & Berzuini, 2001;
Godsill & Clapp, 2001). For example, in the case where one adopts SMC based on
rejuvenation and extension (i.e., a SMC that does not modify the past), one can at
the end of each SMC time step apply one or more MCMC steps to each IS realization.
The MCMC step can be very general, and in particular one could propose to modify
the past, resulting in a SMC-MCMC hybrid algorithm that rejuvenates, extends,
and modifies past IS realizations. The most basic algorithm is as follows:
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Step 0: Assume at time t − 1 we have the IS Θt−1 = {θ(i)
1:t−1, w

(i)
1:t−1 :

i = 1, . . . , N}.
Step 1: Carry out a SMC step from time t−1 to t (e.g., using Pitt’s and

Shephard’s rejuvenation and extension algorithm from Section 4.3),

yielding a new IS Θt = {θ(i)
1:t, w

(i)
1:t : i = 1, . . . , N}.

Step 2: Use B MCMC steps to perturb the IS:

For i = 1, . . . , N :

Step 2.1: Draw Ii ∈ {1, . . . , N} with p(Ii = k) = w
(k)
1:t ; k =

1, . . . , N , and put θ
(i,0)
1:t = θ

(Ii)
1:t .

For j = 1, . . . , B:

Step 3.1: Make a MCMC proposal θ̃1:t ∼ q(θ̃1:t |θ(i,j−1)
1:t ).

Step 3.2: Compute the MCMC acceptance probability α(θ̃1:t; θ
(i,j−1)
1:t )

and put θ
(i,j)
1:t = θ̃1:t with probability α(θ̃1:t; θ

(i,j−1)
1:t ), else

θ
(i,j)
1:t = θ

(i,j−1)
1:t .

Step 3 The new IS is given by θ
(i)
1:t = θ

(i,M)
1:t with w

(i)
1:t = 1/N — that is,

the sample is equally weighted.

There is a variation to the algorithm above where the random draw in Step 2.1
is simply replaced with θ

(i,0)
1:t = θ

(i)
1:t.

MCMC Prior to SMC

The SMC algorithm in Table 3 needs to be initialized with an IS at time t0; the
first time point of data processing. An ideal way to generate this initial sample is
via MCMC using data from time 1, . . . , t0. The resulting, equally weighted MCMC
sample can then be passed on to SMC for processing data from time t0+1, t0+2, . . . .

4.6 SMC Proposal Distributions

For a SMC algorithm that just rejuvenates and extends past realizations (the boot-
strap filter and Pitt’s and Shephard’s modification), we have already mentioned two
natural candidates for the proposal distribution qt(θ̃t | θ̃1:t−1):

qt(θ̃t | θ̃1:t−1) = p(θ̃t | θ̃1:t−1), (the prior)

qt(θ̃t | θ̃1:t−1) = p(θ̃t | θ̃1:t−1,yt). (the full conditional)

In the case where the full conditional distribution is not available, one can aim at
designing a proposal distribution that is an approximation to the full conditional
(this mirrors the Gibbs proposal algorithm in MCMC). Popular approximations are
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multi-variate Gaussian or t distributions. If the prior distribution p(θt | θ̃1:t−1) is
informative (relatively narrow and well focused) it is often just sufficient to take the
proposal distribution equal to the prior distribution, as suggested by Gordon.

In the case when the past SMC realizations are perturbed by carrying out one
or more MCMC steps for each realization, as outlined in previous section, all the
proposal methods suggested in Section 3.4 apply.
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5 Applications

We shall demonstrate the use of MCMC and SMC for two applications. The first one
is a linear Gaussian (Normal) model, a combination of the Gaussian example given
in Section 1.3, page 3, and the Gaussian target-tracking setup given in Section 2.2.
In this case there is an analytic, closed form expression for the posterior distributions
of interest, which can be compared to the sample-derived (MCMC/SMC) posterior
inference approach. The second application is the atmospheric event reconstruction
problem described in Section 2.3. In this case there is no closed-form analytic
expression available for posterior inference.

5.1 Bivariate Gaussian Distribution

Our setup is as follows: Assume at “time” 1 we have the unknown system parameter
x1 (e.g., a location of an object) and an observation y1 that is assumed to be related
to x1 according to the additive measurement-error model

y1 = x1 + ε1, where ε1 ∼ Gau(0, σ2). (32)

The measurement-error model can also be written as y1 ∼ Gau(x1, σ
2). A priori,

we assume that
x1 = µ1 + δ1, where δ1 ∼ Gau(0, τ 2). (33)

That is, x1 ∼ Gau(µ1, τ
2) where both µ1 and τ 2 are known. Given this setup,

Gaussian theory (e.g., West & Harrison, 1997, chapter 17.2) yields:(
y1 |x1

)
∼ Gau(x1, τ

2 + σ2)[
y1

x1

]
∼ Gau

([
µ1

µ1

]
,

[
τ 2 + σ2 τ 2

τ 2 τ 2

])
.(

x1 | y1

)
∼ Gau(µ1 + ρ2(y1 − µ1), τ

2(1− ρ2))

where ρ2 = τ 2/(τ 2 + σ2). Hence, the posterior distribution of x1 given y1 is

p(x1 | y1) , and is Gau(µ1 + ρ2(y1 − µ1), τ
2(1− ρ2)). (34)

For the setup above, we generated synthetic data. We assumed that x1 = 0
and generated y1 according to the measurement-error model in (32) with σ2 = 1,
yielding

y1 = −0.626, drawn from Gau(x1 = 0, σ2 = 1).

The parameters associated with the prior for x1 in (33) were taken to be

µ1 = 0, and τ 2 = 102,

yielding a rather vague prior information. This yields a Gaussian posterior distri-
bution for x1 with mean equal to −0.620 and standard deviation equal to 0.990;
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see (34). We shall now apply MCMC to sample from the posterior distribution and
compare to the true distribution.

We applied MCMC using a Gaussian random-walk proposal distribution,

x̃1 ∼ q1(x̃1 |x(i)
1 ) = ϕ(x̃1; x

(i)
1 , ξ2),

where ϕ(x̃1; x
(i)
1 , ξ2) denotes the Gaussian density with mean x

(i)
1 and variance ξ2

evaluated at x̃1. Since the proposal distribution is symmetric (q1(x̃1 |x(i)
1 ) = q1(x

(i)
1 | x̃1)),

the acceptance ratio is simply given by

ρ(x̃1; x
(i)
1 ) =

p(y1 | x̃1)

p(y1 |x(i)
1 )

=
ϕ(y1; x̃1, σ

2)

ϕ(y1; x
(i)
1 , σ2)

.

We generated three MCMC samples, each of size 2,000, using a different value for
ξ in the proposal distribution for each sample; ξ = 0.35, 2.5, 12. With ξ = 0.35
the acceptance rate was around 90% (too high due to too small step-size), with
ξ = 2.5 the acceptance rate was around 0.43% (which is close to optimal), while for
ξ = 12 the acceptance rate was around 10% (too low due to too large step-size).
Figure 1 summarizes the results from the three chains. We see how the MCMC
sample corresponding to ξ = 2.5 mixes better than the other two samples, resulting
in smaller auto-correlation (i.e., larger effective sample size). A histogram of the
sample realizations is seen to match well the true posterior density.

We shall now extend the above example to “time” 2: At time 2 we have the
unknown system variable x2 (e.g., the object moved to a new location) and a new
observation y2 that is assumed to be related to x2 according to the same additive
measurement-error model as before;

y2 = x2 + ε2, where ε2 ∼ Gau(0, σ2).

What we know a priori is that x2 is not too far (different) from x1. We therefore
assume the following conditional prior distribution for x2,

x2 = x1 + η2, where η2 ∼ Gau(0, 1).

That is, x2 ∼ Gau(x1, 1) a priori. To generate synthetic data at time 2, we let
x2 = 1 and generate the observation y2 according to the measurement-error model,
yielding y2 = 1.184.

Given the new data y2 we want to derive a sample from the posterior distribution
of (x1, x2) given (y1, y2); that is, from p(x1, x2 | y1, y2). It should be noted, since
all the distributions involved are Gaussian, the posterior distribution is available in
closed form as multivariate Gaussian (see e.g., West & Harrison, 1997, chapter 17.2).
Hence, we can compare our sample to the true posterior, as before.

There are two approaches we can take to generate realizations from p(x1, x2 | y1, y2):
(1) start a new MCMC to generate a sample from p(x1, x2 | y1, y2) or (2) use the pre-
vious MCMC sample as a starting point for a SMC. The first option would be similar
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Figure 1: MCMC summary plots for x1 for three different MCMC samples; left, a
proposal distribution with small step-size (ξ = 0.35), middle, a proposal distribution
with a good step-size (ξ = 2.5), and right, a proposal distribution with too big step-
size (ξ = 12). The first row of plots shows the the first 200 realizations for each chain
along with the true value of x1 superimposed (blue, solid line) and the mean and
plus/minus one standard deviation of the true posterior distribution (red,dashed).
The middle row of plots shows the auto-correlation in each chain. The bottom row
of plots show a histogram of the realizations along with the true value of x1 (blue,
solid) and the true posterior density (red, dashed). The red circles show the data
point y1.
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to the previous MCMC approach for x1 alone, except we would use, for example a
2D Gaussian random-walk proposal as we have to sample both x1 and x2. We shall
therefore demonstrate the use of the second option, SMC, using Gordon’s bootstrap
filter, as outlined in Table 4 for this implementation.

Table 4: SMC Algorithm for Bivariate Gaussian Example.

Initial Sample: Start with the inital sample {x(i)
1 : i = 1, . . . , N} generated by

MCMC. (Note, it is an equally weighted sample; w
(i)
1 = 1/N .)

For i = 1, . . . , N :

(1) Sample x
(i)
2 ∼ q2(x2 |x(i)

1 ), where q2(· | x(i)
1 ) is Gau(x

(i)
1 , 1), the condi-

tional prior distribution.

(2) Compute the importance weights w̃
(i)
1:2 = ϕ(y2; x

(i)
2 , σ2)

The final sample is then given by {(x(i)
1 , x

(i)
2 ), w

(i)
1:2 : i = 1, . . . , N}, where w

(i)
1:2 =

w̃1:2/
∑

j w̃
(j)
1:2.

To get a final, equally weighted sample at time 2, the final weighted SMC re-
alizations were resampled; that is, 2,000 sample points were drawn from the final
collection (with replacement), where the probability of drawing each point is pro-
portional to its final weight. Hence, the resampled collection has multiple copies of
realizations with high weights, but realization with low weights have small chance of
being picked. (Of the 2,000 original realizations, 1,124 were selected by the resam-
pling process and of those, 500 appeared once in the sample, 372 appeared twice,
and 372 three times.) Figure 2 summarizes the results. It shows the marginal his-
tograms of the samples for x1 and x2, along with the true posterior distribution,
and the joint distribution of x1 and x2 along with true posterior contour lines.

5.2 Atmospheric Dispersion Modeling with Unknown Source
Characteristics

We shall now apply MCMC and SMC to estimate an unknown release into the at-
mosphere using a computer dispersion simulation model as described in Section 2.3.

The Setup: Synthetic Truth and Data

To test the feasibility of using MCMC and SMC to conduct inference on the charac-
teristics of an unknown release into the atmosphere, we generated a synthetic sensor
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Figure 2: The left and the middle panels show the marginal distribution of x1 and
x2, with the true marginal distribution shown as (red) dotted line and the true value
of x1 and x2 given by a (blue) solid vertical line (a red circles show the observed
data). The right panel shows the joint distribution of x1 and x2 as represented
by the SMC realizations (via resampling). The true mean of the joint posterior
distribution is shown along with the 50% and the 95% contour lines.

data from a given source. Our setup is shown in Figure 3 (left). It shows a single
stationary source on the left side of the domain, with a constant wind blowing from
the West and five sensors located downwind from the source. Our time domain is
one hour and is splitted into six 10min intervals. In the first 10min interval the
source is not emitting at all, it then emits at a (relative) rate of 1.0, 0.5, 0.25, 0.1,
0.0 in the remaining five 10min intervals. The five sensors report 10min average con-
centrations in the same six 10min intervals as the source is emitting at a constant
rate (this is just for convenience and is not required). The atmospheric dispersion
model INPUFF (Petersen & Lavdas, 1986) was used to simulate the dispersion of
the release, which includes computing average concentrations at the five sensors sites
in the six 10min time intervals. These values were taken as the true concentrations
at the five sites in the six time periods; that is, in terms of the notation introduced
in Section 2.3,

C(mj, t) = Ĉ(mj, t) = the INPUFF predicted contaminant average concentra-
tion in the t-th time period, t = 1, . . . , 6, at sensor location mj, j = 1, . . . , 5.

Sensor data {cj,t : j = 1, . . . , 5, t = 1, . . . , 6} was then generated according to the

truncated Gaussian data-model in (9) with mean Ĉ(mj, t) and variance V (Ĉ(mj, t))
given by

V (Ĉ(mj, t)) =
(
1E-9 + 0.2× Ĉ(mj, t)

)2
. (35)

Hence, the standard deviation is given by 1E-9+0.2×Ĉ(mj, t), indicating that mea-
sured average 10min concentration of around 1E-9 and below are not distinguishable
from zero, while higher concentration measurements have an approximated coeffi-
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Figure 3: Left, the location of the stationary release source along with the five
sensors. Right, the synthetic true 10min average concentration at the five sensor
sites along with the synthetic observed concentrations.

cient of variation (CV) equal to 0.2 (20%). Figure 3 (right) shows the synthetic
truth {Ĉ(mj, t)} at the five sensors along with the synthetic data {cj,t}.

Finally, we note that the INPUFF model satisfies the additive factorization of
the predictive concentration as given by (8). This leads to simplifications (and
time-savings) in computations.

Initial MCMC at t = 2

From Figure 3 (right) we see that the first non-zero concentration is observed in the
second 10min time interval at sensor A, a concentration of 2.7E-8, with the remaining
four sensors reporting zero concentrations (or rather, concentrations below detection
level).

We now seek to start an initial MCMC sampler to sample from the posterior
distribution of the unknown source location, x, and the release rate in the first two
10min time interval, s1:2; that is, we seek to sample from π2(θ1:2), θ1:2 = (x, s1:2).
We assume a flat prior on the location of the source, as outlined in Section 2.3, and
a prior on the release rate that assumes an unknown start (i.e., either in the first
or the second time period) and then truncated Gaussian distribution for a non-zero
release; see (10)–(12). In terms of the notation in Section 2.3, we take the initial
non-zero release prior to be given by

f1(st∗) = f(st∗) is Gau(0, 202
)∣∣∞

0
,

which is also the prior we use for subsequent releases; that is, f2(s2 | s1) = f(s1).
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Hence, we assume that knowing s1 has no value in determining s2 a priori (a rather
vague assumption). To summarize, the prior on θ1:2 is given by

p(θ1:2) =

{
f(s1)f(s2) if t∗ = 1,

f(s2) if t∗ = 2.

We take the data-model, the likelihood, to be given by the product of the indi-
vidual distributions in (9), yielding

p(c1:2 |θ1:2) =
2∏

t=1

5∏
j=1

ϕ(cj,t; Ĉ(mj, t), (2E-9 + 0.2× Ĉ(mj, t))
2)
∣∣∞
0

, (36)

where ϕ(c; µ, V )
∣∣∞
0

is the density of a Gaussian distribution with mean µ and vari-
ance V , but restricted to the interval (0,∞]. Note we have inflated the variance
slightly by adding 1E-9 to the standard deviation used to generate the synthetic
data; see (35). This mirrors reality, where the likelihood used in the MCMC sam-
pler is just an approximation to the true (unknown) likelihood function.

The proposal distribution is a mixture of random-walk proposals and consist of
either: (1) making a release rate change proposal, or (2) making a source location
change proposal, or (3) making a joint release and location change proposal.

For the source location we use a random-walk on a lattice with a 0.1 horizon-
tal/vertical distance between grid-locations:

Location Proposal

Let x be the current location of the Markov chain, then:

(1) Create the grid-point neighborhood set

Nd(x) ≡ {x̃ : |x1 − x̃1| ≤ d, |x2 − x̃2| ≤ d, and x̃ 6= x},

where d > 0 is a given neighborhood-size parameter, and recall that
x = (x1, x2) and x̃ = (x̃1, x̃2).

(2) Generate the source location proposal x̃ ∼ q2(x̃ | Nd(x)), where

q2(x̃ | Nd(x)) =
1

|Nd(x)|
I(x̃ ∈ Nd(x)), (37)

|Nd(x)| = the number of grid-points in Nd(x), and I(x̃ ∈ Nd(x)) =
1 if x ∈ Nd(x), otherwise equal to 0.
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The size of the neighborhood Nd(x), given by d, affects the efficiency of the
location proposal. If d is too small, the resulting chain does not mix well and in
addition can also get “stuck” sampling in the vicinity of a local posterior mode. If d
is too large, large number of proposals gets rejected, but the chain is less likely to get
stuck around a local posterior mode. The approach we take is to select randomly the
neighborhood size d among three values, d = 0.1, 0.3, 2, with probability of selecting
each equal to 2/7, 4/7, 1/7, respectively. Hence, if a source location proposal is
made, a neighborhood-size parameters d is first drawn randomly, then a location is
selected randomly from Nd(x).

The benefits of working with a source location lattice is in terms of reduced
number of INPUFF runs needed, as one can store the results for each grid-location
by storing the values {Ĝx,t(mj, t

′)} for each grid-location x.4 The drawback of
the lattice approach is that we cannot distinguish between source locations within a
0.1×0.1 pixel. In practice, the resolution of the lattice can be linked to the accuracy
of the dispersion simulation program; a less accurate dispersion simulator can work
on a coarser grid.

The proposal distribution for the source release rates, s1:2, is slightly more in-
volved and is a two-step mixture; either propose a change in the start time of the
release or propose a change to the current non-zero release rates (or propose both
at the same time).

A change in the start time (t∗) is simply accomplished via random-walk to a
nearest neighbor. Since s1:2 is only of length two, it is just an issue if the release
started in the first time interval or the second time interval. Let s1:2 = (s1, s2) be
the current release rate. The change of start-time proposal is given by:

Release-Rate Start-Time Proposal

(1) If t∗ = 1, that is if s1 > 0, then t̃∗ = 2 is proposed with

s̃1:2 = (s̃1 = 0, s̃2 = s2),

yielding q2(t̃
∗ = 2, s̃1:2 | t∗ = 1, s1:2) = 1.

(2) If t∗ = 2, that is if s1 = 0, then t̃∗ = 1 is proposed with

s̃1:2 = (s̃1, s̃2 = s2), where s̃1 ∼ Gau(0, 52)
∣∣∞
0

,

yielding q2(t̃
∗ = 1, s̃1:2 | t∗ = 2, s1:2) = ϕ(s̃2; 0, 5

2)
∣∣∞
0

.

A change to the non-zero release rates is proposed via random-walk as follows:

4Actually, we are able to get {Ĝx,t(mj , t
′) : x = all grid points, t ≤ t′} in a single ’reverse’

INPUFF-run for each value of (mj , t
′); j = 1, . . . , 5, t′ = 1, 2. Hence, this requires only a total of

10 INPUFF runs.
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Non-Zero Release-Rate Proposal

(1) Propose to change nc non-zero release rates, where

nc = 1 + ∆c, ∆c ∼ Bin(Nc, πc),

where Bin(Nc, πc) denotes a binomial distribution on {0, . . . , Nc},
Nc = t−t∗ and πc ∈ (0, 1] is the rate parameter. Note, if t = t∗ = 2,
then nc = 1, but if t∗ = 1, either one or two release rates are changed
according to the rate parameter πc.

(2) Given the number of release rates to change (nc), select randomly
among the non-zero release rates which one to change and let {tc,j :
j = 1, . . . , nc} index the selected time periods.

(3) For j = 1, . . . , nc, make the random-walk proposal,

s̃tc,j
∼ Gau(stc,j

, τ 2
j )
∣∣∞
0

,

where the standard deviation τj specifies the “step-size”. The
τj’s are selected randomly from the set {1, 3, 9} with probability
{2/7, 4/7, 1/7}, respectively. Hence, each random-walk is carried
out with different step-size.

The proposal density is then given by

q2(s̃1:2 | s1:2) =
nc∏

j=1

ϕ(s̃tc,j
; stc,j

, τ 2
j )
∣∣∞
0

,

and note that we consider nc, {tc,j}, and {τj} fixed; that is, the reverse
proposal density q2(s1:2 | s̃1:2) is computed with the same numbers.

When a decision is made to make a source release change, a random draw is
made as to: (1) make a change to the start-time, (2) make a change to the non-zero
release rates, or (3) make a simultaneous change to the start-time and non-zero
releases. The probability assigned to these three types of proposals is 1/12, 10/12
and 1/12. That is, most of the time a non-zero release rate proposal is made.

The MCMC proposal step then alternates in a random fashion between making
(1) a source location proposal, (2) making a source release rate proposal, or (3) make
both source location and release rate proposals. An equal probability was assigned
to the three different types.

Six different MCMC samples, each of size 10,000, were generated using the above
proposal process. All six chains were initialized with the release rate s

(0)
1:2 = (0.1, 0.1),

but at six different locations:

x ∈ {(4, 1), (4, 3), (4, 5), (1, 1), (1, 2), (1, 5)}.
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The acceptance rate for each chain was about 20% (this low acceptance rate is
expected as the proposal process has a number of save-guard sub-proposals steps
that have a very low change of being accepted when performed, but can potentially
move the chain across low-probability barriers).

For the first 500 iterations (i = 1, . . . , 500), the likelihood was taken to be given
by

p(c1:2 |θ1:2)
1/Ti ,

where Ti = 1+(10−i×(10/500)) and often referred to as the annealing temperature;
see, for example Liu (2001), chapter 10. This causes the true likelihood (and hence,
the data) to be brought in “slowly” as a high value of T results in a “flatter”
likelihood (heated likelihood). This annealing process is well known technique to
escape from a bad initial values, for example, one that is located in the vicinity of
a local posterior mode of a low probability mass.

Figure 4 summarizes the MCMC output from the chain initialized at location
(4,3) and the chain initialized at location (1,2) — the first 500 iterations were
discarded (recall those use the “heated” likelihood). Both chains quickly fixates
on realizations with s1 = 0 (which was how the synthetic data was generated), but
the data seams to provide little information on the release rate in the second time
period, as it is seen to vary widely. Most realizations for the source location form a
half-circle upwind from the sensor reporting the only non-zero concentration. The
second chain, initialized at source location (1,2), generates in the beginning source
location realizations that are clustered together in the lower-left corner. This cluster
of realizations has lower posterior probability compared to the main cluster, as can
be seen from the trace plot of the log-posterior (a log-posterior difference of about
5 translates into posterior density ratio of about 150).

The six chains were combined to form a single posterior sample, with the first
1/3 of each chain discarded as a burn-in period. Figure 5 shows two maps of the
marginal posterior distribution of the source location. It shows a half-circle shaped
distribution upwind from the only sensor reporting a non-zero concentration. The
true location of the source is at the edge of the posterior distribution.

Figure 6 shows the posterior marginal distribution of the release rate in the
two time periods. The release rate for the first time period is estimated to have
p(s1 = 0 | c1:2) = 0.89; that is, most likely no release in the first time period (which
is the case). However, the data is not very informative for the release in the second
time interval, and the marginal posterior distribution for s2 is very close to the prior
distribution; Figure 6 (left). It is often more informative to look at the posterior
release rate conditional on a given location. Figure 6 shows the expected (average)
non-zero release rate in the second time period for different potential source locations
(those with non-zero posterior probability). As can be seen, locations further away
from the sensors are associated with higher release rates than those that are closer
to the sensors.
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Chain 1 [Initialized at location (4,3)]
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Chain 2 [Initialized at location (1,2)]
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Figure 4: MCMC summary for two chains. Shown is the trace of the log-posterior
distribution (up to an unknown additive constant), the trace of the release rate
parameters, the trace of the x and y components of the source location, and finally
a plot of the sampled source locations along with the location of the sensors and the
true location of the source.
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Figure 5: Left, a 3D perspective plot of the marginal posterior distribution of the
source location. Right, a 2D level plot of the marginal posterior distribution of
the source location (color scheme: cyan = low, magenta = high) along with con-
tours showing the regions containing the 90%, 95%, 99%, and 99.9% of the highest
posterior probability density (HPD credible sets).
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Figure 6: Left, a histogram of the posterior samples for the release rate in the second
time period. The true release rate is indicated with a (blue) vertical line and the
prior distribution is shown as a (red) dotted line. Right, the expected (average)
non-zero release rate, log10-transformed, in the second time period conditional on
location (i.e., log10 average release-rate at each location pixel).
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MCMC at t = 3

As new data arrives in the third time period (t = 3), one can carry out a new
MCMC for posterior inference or use SMC, using the MCMC sample from t = 2 as
the initial sample. We shall now carry out a MCMC posterior sampling for t = 3
(starting from scratch), but later one we shall use SMC for the same purpose.

We applied the same proposal process at t = 3 as at t = 2, with obvious exten-
sions to make it applicable for three time periods. A short initial run was carried
out to fine-tune the proposal distributions (i.e., step-size of random-walk samplers,
etc.), then six different chains were sampled, as in the case for t = 2.

Figure 7 summaries the result for two of the six chains in the same way as in
Figure 4. There is considerable more non-zero concentration sensor-observations
available at t = 3 that yield stronger posterior information. We see that one of the
chains in Figure 7 quickly converges while the other one needs approximately 4,000
iterations to stabilize.

We combined the samples from the six chains after discarding the first half of
each chain (a rather conservative approach). Figure 8 shows the marginal poste-
rior distribution of the source location and the marginal distribution of the source
release-rate in the second time period (s2). There is a much stronger posterior
knowledge about the source location at this time. Similarly, the marginal posterior
distribution for the release rate at t = 2 is rather peeked with the true release rate
close to the posterior peek. The release rate at t = 1 is estimated to be equal to
0 with 99.97% probability. However, not much is known about the release rate at
t = 3 (as expected).

SMC

We shall now carry out SMC for t = 3, . . . , 6 using the last 6,667 MCMC realizations
(the first 3,333 discarded as a burn-in period) from each of the six chains at t = 2
as the initial posterior sample;

Θ1:2 = {θ(i)
1:2 : i = 1, . . . , 40,002},

where the realizations are all of equal weight. We shall use Pitt’s and Shephard’s
(P&S) modification of Gordon’s bootstrap filter, as outlined in Section 4.3, with
the addition of performing MCMC perturbation within each SMC cycle, as outlined
in Section 4.5 on hybrid methods. The SMC-MCMC algorithm applied is given in
Table 5, with details on the various proposal distribution used to follow.

The likelihood, p(ct |θ1:t), is as in (9) and (36);

p(ct |θ1:t) =
5∏

j=1

ϕ(cj,t; Ĉ(mj, t), (2E-9 + 0.2× Ĉ(mj, t))
2)
∣∣∞
0

.
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Chain 1 [Initialized at location (4,3)]
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Chain 2 [Initialized at location (1,2)]
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Figure 7: MCMC summary for two chains of six at t = 3; see Figure 4 for the
content of each plot.
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Figure 8: Left, a 2D level plot of the marginal posterior distribution of the source
location (color scheme: cyan = low, magenta = high) along with contours showing
the regions containing the 90%, 95%, 99%, and 99.9% of the highest posterior prob-
ability density (HPD credible sets). Right, a histogram of the posterior samples for
the release rate in the second time period, with the true release rate shown as a
(blue) vertical line and the prior distribution shown as a (red) dotted line.
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Similarly, the conditional prior for θt, p(θt |θ1:t−1), is as in the MCMC case for
non-zero releases, and given by

p(θt |θ1:t−1) = p(xt, st |xt−1) =

{
ϕ(st; 0, 202) if xt = xt−1,

0 otherwise.
(38)

Note, this is a very vague conditional prior on the release rate as it does not depend
on s1:t−1 at all.

The proposal distribution qt(θt |θ1:t−1) in Table 5 is given by

qt(θt |θ1:t−1) = qt(xt, st |xt−1, st−1) =

{
ϕ(st; st−1, 102)

∣∣∞
0

if xt = xt−1,

0 otherwise.

Hence, it proposes no change in location (as expected and in accordance to our
model) and then st is generated from a Gaussian distribution with mean st−1 and
standard deviation 10, and constrained to the interval [0,∞).

For the MCMC perturbation step in Table 5 we used a similar proposal process
as in the MCMC-only application previously for t = 2 and t = 3. That is, a random
choice is made to carry on: (1) a proposal to change the source release, (2) a proposal
to change the source location, or (3) both. The probability assigned to these three
proposals is 1/6, 4/6, and 1/4, respectively.

The source-release proposal consists of a random-walk proposal for a selected
source-release time period. Let θ

(i,j)
1:t = (x(i,j), s

(i,j)
1:t ) be the current value of the

Markov chain, then:

Release-Rate Proposal

(1) Select a time period ť from {t − 2, t − 1, t}, with probability 1/4,
2/4, and 1/4 of selecting each period, respectively.

(2) Generate šť ∼ Gau(s
(i,j)

ť
, σ2

ť
)
∣∣∞
0

and put the remaining release rates

of š1:t identical to those of s
(i,j)
1:t .

The standard deviations (SD) used in the release-rate proposal above were given by,

σk = 0.75× {the empirical SD of {š(i,0)
k : i = 1, . . . , N}},

but never taken less than 0.12.
The proposal for the source location was taken to be a random-walk to a grid-

point within a horizontal or vertical distance of 0.2 from the current location; that
is, as the proposal given in (37).
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The SMC results are summarized in Figures 9–11, for the time periods 1–3,
1–4, and 1–6, respectively. Each figure shows the marginal posterior distribution
of the source location and the marginal posterior distribution the release rate for
the three most recent time periods in each case. As expected, as more data is
gathered, the marginal posterior distribution of the source locations narrows around
the true location of the source. Similarly, as more data is processed, we gain better
knowledge about the source release-rate history. Note how the posterior distribution
of the release rate in the most recent time period in each case gets more informative
(narrower) at later time periods. This is due to a narrower posterior distribution
for the source location, which limits what the potential release rates in the latest
periods could be, given the data.

MCMC versus SMC

Both MCMC and SMC samples were generated for posterior inference at t = 3; see
Figure 8 and Figure 9, respectively. We notice a slight difference in the shape of the
highest posterior density (HPD) regions constructed for the source location based
on the two methods. However, the extent of the HPDs regions are very similar
for both methods. The SMC-based posterior distribution of s2 in Figure 9 seams
to be slightly narrower than the one shown in Figure 8 and based on the MCMC
sample. In general, we believe that the SMC sample gives a better representation of
the posterior than the MCMC sample; the SMC sample consist of a slightly larger
number of realizations (about 40,000 versus 30,000), but more importantly, it is a
better mixed sample since each SMC realizations is independently perturbed via 10
MCMC iterations.

One might get the impression that the SMC algorithm needs considerable more
computation time than the MCMC algorithm since, in addition to extending the
past SMC realizations from time t = 2 to t = 3, it performs 10 MCMC iteration for
each SMC realization (a total of 400,000 MCMC iterations). However, this is not the
case. As the SMC is not a sequential algorithm (like the MCMC algorithm), one can
take advantage of highly optimized vectorized computer operations that operate on
all the realizations at once. In fact, our current (serial) prototype implementation
of the SMC algorithm ran faster than the MCMC implementation. In addition, it is
relatively easy to implement the SMC algorithm to effectively use a computer with
a large number of CPUs (e.g., a Linux cluster), while this is not the case for the
MCMC algorithm.
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Figure 9: SMC posterior inference after processing data from time periods 1–3.
Top-left, a 2D level plot of the marginal posterior distribution of the source location
(color scheme: cyan = low, magenta = high) along with contours showing the
regions containing the 90%, 95%, 99%, and 99.9% of the highest posterior probability
density (HPD credible sets). The remaining plots show a histogram of the posterior
samples for the release rate at t = 1, 2, 3, with the true release rate shown as a (blue)
vertical line (note different horizontal scale).
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Figure 10: SMC posterior inference after processing data from time periods 1–4.
Top-left, a 2D level plot of the marginal posterior distribution of the source location
(color scheme: cyan = low, magenta = high) along with contours showing the
regions containing the 90%, 95%, 99%, and 99.9% of the highest posterior probability
density (HPD credible sets). The remaining plots show a histogram of the posterior
samples for the release rate at t = 2, 3, 4, with the true release rate shown as a (blue)
vertical line (note different horizontal scale).
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Figure 11: SMC posterior inference after processing data from time periods 1–6.
Top-left, a 2D level plot of the marginal posterior distribution of the source location
(color scheme: cyan = low, magenta = high) along with contours showing the
regions containing the 90%, 95%, 99%, and 99.9% of the highest posterior probability
density (HPD credible sets). The remaining plots show a histogram of the posterior
samples for the release rate at t = 4, 5, 6, with the true release rate shown as a (blue)
vertical line (note different horizontal scale).
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Table 5: SMC-MCMC Algorithm for Atmospheric Event Reconstruction.

The hybrid SMC-MCMC algorithm used to generate samples from the posterior
at times t = 3, . . . , 6 in the atmospheric reconstruction application. Details on
proposal distributions provided in text.

Initial Sample: Start with the initial, equal-weighted sample {θ(i)
1:2 : i =

1, . . . , N}, N = 40,002, derived from the initial MCMC samples.

For t = 3, . . . , 6: (Looping through the time periods)

Proposal Weights (P&S): For i = 1, . . . , N :

(1) Put θ̂
(i)

= 0.

(2) Compute v
(i)
1:t−1 = p(ct |θ(i)

1:t−1, θ̂
(i)

t )2. [“heated” likelihood.]

Extending to time t: For i = 1, . . . , N :

(1) Sample Ĩi ∈ {1, . . . , N} with p(Ĩi = j) ∝ v
(j)
1:t−1; j = 1, . . . , N .

(2) Generate θ̃
(i)

t ∼ qt(θt |θ(Ĩi)
1:t−1) and let θ̃

(i)

1:t ≡ (θ
(Ĩi)
1:t−1, θ̃

(i)

t ).

(3) Compute the importance-sample weight

w̃
(i)
1:t =

p(ct | θ̃
(i)

1:t)p(θ̃
(i)

t | θ̃(i)

1:t−1)

qt(θ̃
(i)

t |θ(i)
1:t−1)

1

v
(i)
1:t−1

. [recall, w
(i)
1:t−1 ∝ 1.]

MCMC Perturbation: For i = 1, . . . , N :

Selection: Select Ĩi ∈ {1, . . . , N} with p(Ĩi = j) ∝ w̃
(j)
1:t ; j =

1, . . . , N , and put θ
(i,0)
1:t = θ̃

(Ĩi)

1:t .

MCMC Loop: For j = 1, . . . , B: [B = 10 used.]

(1) Propose θ̌1:t ∼ qt(θ̌1:t |θ(i,j−1)
1:t ).

(2) Compute the M-H ratio

ρt(θ̌1:t; θ
(i,j−1)
1:t ) =

p(c1:t | θ̌1:t)p(θ̌1:t)qt(θ
(i,j−1)
1:t | θ̌1:t)

p(c1:t |θ(i,j−1)
1:t )p(θ

(i,j−1)
1:t )qt(θ̌1:t |θ(i,j−1)

1:t )
.

(3) Generate u ∼ Unif[0, 1] and put θ
(i,j)
1:t = θ̌1:t if

ρt(θ̌1:t; θ
(i,j−1)
1:t ) > u, otherwise put θ

(i,j)
1:t = θ

(i,j−1)
1:t .

Collect: Put θ
(i)
1:t = θ

(i,B)
1:t , then {θ(i)

1:t : i = 1, . . . , N} is an equal-
weighted sample from πt(θ1:t).
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